ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Пазл Пете понравился, он решил его склеить и повесить на стену. За одну минуту он склеивал вместе два куска (начальных или ранее склеенных). В результате весь пазл соединился в одну цельную картину за 2 часа. За какое время собралась бы картина, если бы Петя склеивал вместе за минуту не по два, а по три куска?

Вниз   Решение


Прямая l касается окружности с диаметром AB в точке C; M и N — проекции точек A и B на прямую l, D — проекция точки C на AB. Докажите, что  CD2 = AM . BN.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 79510  (#1)

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 9

Доказать, что если  a > b > 0  и  x/a < y/b,  то справедливо неравенство  

Прислать комментарий     Решение

Задача 79511  (#2)

Темы:   [ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
[ Вспомогательная раскраска ]
Сложность: 4+
Классы: 9

Школьник хочет вырезать из квадрата размером 2n×2n наибольшее количество прямоугольников размером 1×(n + 1). Найти это количество для каждого натурального значения n.
Прислать комментарий     Решение


Задача 79512  (#3)

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Турниры и турнирные таблицы ]
Сложность: 4-
Классы: 7,8,9

В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.

Прислать комментарий     Решение

Задача 79513  (#4)

Темы:   [ Пятиугольники ]
[ Вспомогательные равные треугольники ]
[ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 9,10

В выпуклом пятиугольнике ABCDE углы при вершинах B и D – прямые,  ∠BCA = ∠DCE,  а точка M – середина стороны AE. Доказать, что  MB = MD.

Прислать комментарий     Решение

Задача 79514  (#5)

Темы:   [ Последовательности (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 8,9,10

Можно ли выбрать некоторые натуральные числа так, чтобы при любом натуральном значении n хотя бы одно из чисел n, n + 50 было выбрано и хотя бы одно из чисел n, n + 1987 не было выбрано?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .