ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны числа: 4, 14, 24, ..., 94, 104. Докажите, что из них нельзя вычеркнуть сперва одно число, затем из оставшихся ещё два, затем ещё три и, наконец, ещё четыре числа так, чтобы после каждого вычёркивания сумма оставшихся чисел делилась на 11.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 58473  (#31.006)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что множество точек, сумма расстояний от которых до двух заданных точек F1 и F2 — постоянная величина, есть эллипс.
Прислать комментарий     Решение


Задача 58474  (#31.007)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что середины параллельных хорд эллипса лежат на одной прямой.
Прислать комментарий     Решение


Задача 58475  (#31.008)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что уравнение касательной к эллипсу $ {\frac{x^2}{a^2}}$ + $ {\frac{y^2}{b^2}}$ = 1, проведенной в точке X = (x0, y0), имеет вид

$\displaystyle {\frac{x_0x}{a^2}}$ + $\displaystyle {\frac{y_0y}{b^2}}$ = 1.


Прислать комментарий     Решение

Задача 58476  (#31.009)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что эллиптическое зеркало обладает тем свойством, что пучок лучей света, исходящий из одного фокуса, сходится в другом.
Прислать комментарий     Решение


Задача 58477  (#31.010)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

а) Докажите, что для любого параллелограмма существует эллипс, касающийся сторон параллелограмма в их серединах.
б) Докажите, что для любого треугольника существует эллипс, касающийся сторон треугольника в их серединах.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .