Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 33]
|
|
Сложность: 5 Классы: 8,9,10,11
|
Город представляет из себя клетчатый прямоугольник, в каждой клетке стоит пятиэтажный дом. Закон о реновации позволяет выбрать две соседних по стороне клетки, в которых стоят дома, и снести тот дом, где меньше этажей (либо столько же). При этом над вторым домом надстраивается столько этажей, сколько было в снесённом доме. Какое наименьшее число домов можно оставить в городе, пользуясь законом о реновации, если город имеет размеры
а) $20\times 20$ клеток
б) $50\times 90$ клеток?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Существует ли прямоугольник, который можно разрезать на 100 прямоугольников,
которые все ему подобны, но среди которых нет двух одинаковых?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 33]