ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Чеботарев А.С.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 10]      



Задача 111908

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теория алгоритмов (прочее) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 8,9,10

В каждой клетке квадрата 101×101, кроме центральной, стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает извне в произвольную клетку на границе квадрата, после чего ездит параллельно сторонам клеток, придерживаясь двух правил:
  1) в клетке со знаком "прямо" она продолжает путь в том же направлении;
  2) в клетке со знаком "поворот" она поворачивает на 90° (в любую сторону по своему выбору).
Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?

Прислать комментарий     Решение

Задача 105149

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 7,8,9

Боря задумал целое число, большее 100. Кира называет целое число, большее 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия?

Прислать комментарий     Решение

Задача 105161

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
[ Обратные тригонометрические функции ]
[ Многочлены (прочее) ]
Сложность: 4+
Классы: 10,11

Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций  f1(x),  f2(x), ...,  fN(x), композициями которых можно записать любой из них (например,  P1(x) =  f2(f1(f2(x))))?

Прислать комментарий     Решение

Задача 111332

Темы:   [ Процессы и операции ]
[ Уравнения в целых числах ]
[ Теория игр (прочее) ]
Сложность: 4+
Классы: 8,9,10

У игрока есть m золотых и n серебряных монет. В начале каждого раунда игрок ставит какие-то монеты на красное, какие-то на чёрное (можно вообще ничего не ставить на один из цветов, часть монет можно никуда не ставить). В конце каждого раунда крупье объявляет, что один из цветов выиграл. Ставку на выигравший цвет крупье отдаёт игроку, удваивая в ней количество монет каждого вида, а ставку на проигравший цвет забирает себе. Игрок хочет, чтобы монет одного вида у него стало ровно в три раза больше, чем другого (в частности, его устроит остаться совсем без денег). При каких m и n крупье не сможет ему помешать?

Прислать комментарий     Решение

Задача 116183

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Покрытия ]
[ Осевая и скользящая симметрии (прочее) ]
[ Композиции симметрий ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10

На плоскости расположен круг. Какое наименьшее количество прямых надо провести, чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз), можно было накрыть им любую заданную точку плоскости?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .