ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Женодаров Р.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



Задача 65086

Темы:   [ Трапеции (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD  AD = АВ + CD.  Оказалось, что биссектриса угла А проходит через середину стороны ВС.
Докажите, что биссектриса угла D также проходит через середину ВС.

Прислать комментарий     Решение

Задача 65115

Темы:   [ Процессы и операции ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

После просмотра фильма зрители по очереди оценивали фильм целым числом баллов от 0 до 10. В каждый момент времени рейтинг фильма вычислялся как сумма всех выставленных оценок, делённая на их количество. В некоторый момент времени T рейтинг оказался целым числом, а затем с каждым новым проголосовавшим зрителем он уменьшался на единицу. Какое наибольшее количество зрителей могло проголосовать после момента T?

Прислать комментарий     Решение

Задача 65547

Темы:   [ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

В ящике лежат 111 шариков: красные, синие, зелёные и белые. Известно, что если, не заглядывая в ящик, вытащить 100 шариков, то среди них обязательно найдутся четыре шарика различных цветов. Какое наименьшее число шариков нужно вытащить, не заглядывая в ящик, чтобы среди них наверняка нашлись три шарика различных цветов?

Прислать комментарий     Решение

Задача 65552

Темы:   [ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В ящике лежат 100 шариков: белые, синие и красные. Известно, что если, не заглядывая в ящик, вытащить 26 шариков, то среди них обязательно найдутся 10 шариков одного цвета. Какое наименьшее число шариков нужно вытащить, не заглядывая в ящик, чтобы среди них наверняка нашлись 30 шариков одного цвета?
Прислать комментарий     Решение


Задача 65568

Тема:   [ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9

Пусть N – натуральное число. Докажите, что в десятичной записи либо числа N, либо числа 3N найдётся одна из цифр 1, 2, 9.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .