ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Толпыго А.К.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 70]      



Задача 65406

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Соображения непрерывности ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Периметр выпуклого четырёхугольника равен 2004, одна из диагоналей равна 1001. Может ли вторая диагональ быть равна  а) 1;  б) 2;  в) 1001?

Прислать комментарий     Решение

Задача 65550

Темы:   [ Деление с остатком ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые приблизительно равны? Слагаемых может быть одно или несколько. Числа называются приблизительно равными, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.

Прислать комментарий     Решение

Задача 65574

Темы:   [ Разбиения на пары и группы; биекции ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Сумма нескольких положительных чисел равна 10, а сумма квадратов этих чисел больше 20. Докажите, что сумма кубов этих чисел больше 40.

Прислать комментарий     Решение

Задача 65818

Темы:   [ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Можно ли уместить два точных куба между соседними точными квадратами?
Иными словами, имеет ли решение в целых числах неравенство:  n² < a³ < b³ < (n + 1)²?
Прислать комментарий     Решение


Задача 65838

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 8,9,10

Известно, что число a положительно, а неравенство  1 < xa < 2  имеет ровно три решения в целых числах.
Сколько решений в целых числах может иметь неравенство  2 < xa < 3 ?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .