Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 194]
|
|
|
Сложность: 3+ Классы: 8,9,10
|
В остроугольном треугольнике ABC проведены медиана AM, биссектриса AL и высота AH (H лежит между L и B). При этом ML = LH = HB.
Найдите отношение сторон треугольника ABC.
Вписанный n-угольник (n > 3) разбит непересекающимися (во внутренних точках) диагоналями на треугольники. Каждый из получившихся треугольников подобен хотя бы одному из остальных. При каких n возможна описанная ситуация?
В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Выпуклый n-угольник разрезан на три выпуклых многоугольника. У одного из них n сторон, у другого – больше чем n, у третьего – меньше чем n.
Каковы возможные значения n?
В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 194]