ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32089
Темы:    [ Шахматные доски и шахматные фигуры ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга?


Решение

  Очевидно, что в каждом столбике из восьми кубиков-клеток может стоять только одна ладья, поэтому больше 64 ладей поставить нельзя.
  Покажем, как поставить 64 ладьи, чтобы они не били друг друга. Введём систему координат с осями, направленными вдоль ребер куба так, чтобы каждая клетка имела координатами тройку  (x, y, z)  чисел от 0 до 7 и поставим ладьи в клетки, сумма координат которых делится на 8.
  Предположим, какие-то две ладьи бьют друг друга. Значит, две их координаты (скажем, x и y) совпадают, а третьи – различны (обозначим их z1 и z2). Суммы  x + y + z1  и  x + y + z2,  а значит, и их разность  z1z2  кратны 8. Но это невозможно, так как z1 и z2 – различные неотрицательные числа, меньшие 8.
  Заметим теперь, что в каждом вертикальном столбике находится по ладье, то есть что мы поставили 64 ладьи. Действительно, каждый такой столбик определяется своей парой координат x и y. Координата z для ладьи в этом столбике однозначно задается условием  x + y + z ≡ 0 (mod 8).


Ответ

64 ладьи.

Замечания

Источник решения: книга В.О. Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998.

Источники и прецеденты использования

web-сайт
задача
Кружок
Название ВМШ 57 школы
класс
Класс 7
год
Место проведения 57 школа
Год 2005/06
занятие
Номер 21
Название Сколько?
задача
Номер 2
олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 10
Дата 1987
задача
Номер 13

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .