ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 105155
Темы:    [ Теория алгоритмов (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 5
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В тюрьму поместили 100 узников. Надзиратель сказал им:
"Я дам вам вечер поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Иногда я буду одного из вас отводить в комнату, в которой есть лампа (вначале она выключена). Уходя из комнаты, вы можете оставить лампу как включенной, так и выключенной.

Если в какой-то момент кто-то из вас скажет мне, что вы все уже побывали в комнате, и будет прав, то я всех вас выпущу на свободу. А если неправ - скормлю всех крокодилам. И не волнуйтесь, что кого-нибудь забудут - если будете молчать, то все побываете в комнате, и ни для кого никакое посещение комнаты не станет последним."

Придумайте стратегию, гарантирующую узникам освобождение.

Решение

Узники выбирают одного определённого человека (будем называть его "счётчиком"), который будет считать узников по такой системе: если, приходя в комнату, он обнаруживает, что свет включён, то он прибавляет к уже посчитанному числу узников единицу и выключает свет, если же свет не горит, то он, ничего не меняя, возвращается обратно в свою камеру. Каждый из оставшихся узников действует по такому правилу: если, приходя в комнату, он обнаруживает, что свет не горит, и он до этого ни разу не включал свет, то он его включает. В остальных случаях он ничего не меняет. Когда число посчитанных узников становится равным 99, "счётчик" говорит, что все узники уже побывали в комнате.

Действительно, каждый узник, кроме "счётчика", включит свет в комнате не более одного раза. Когда "счётчик" насчитает 99, он может быть уверен, что все остальные узники уже побывали в комнате хотя бы раз, кроме того он сам уже побывал в комнате. Получается, что к этому моменту все узники заведомо побывали в комнате хоть раз.

Остаётся доказать, что каждый из 99 узников включит свет. Предположим, что это не так - свет будет включён менее 99 раз. Тогда, начиная с некоторого дня n, свет включаться не будет. Так как никакой заход в комнату не будет для счётчика последним, он побывает в комнате после этого дня (например, на m-й день, m>n). Если свет при этом горел, он его выключит. Значит, начиная с (m+1)-го дня свет будет всё время выключен. Рассмотрим узника, который свет ещё ни разу не зажигал. Так как и для него никакой заход в комнату не последний, он побывает в комнате после m-го дня. Но тогда он должен включить свет - противоречие.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 66
Год 2003
вариант
Класс 9
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .