ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

Вниз   Решение


Может ли среднее арифметическое 35 целых чисел равняться 6,35?

ВверхВниз   Решение


Средний возраст одиннадцати игроков футбольной команды – 22 года. Во время матча один из игроков получил травму и ушёл с поля. Средний возраст оставшихся на поле игроков стал равен 21 году. Сколько лет футболисту, получившему травму?

ВверхВниз   Решение


Геометрической интерпретацией итерационного процесса служит итерационная ломаная. Для ее построения на плоскости Oxy рисуется график функции f(x) и проводится биссектриса координатного угла — прямая y=x. Затем на графике функции отмечаются точки A0(x0,f(x0)), A1(x1,f(x1)),..., An(xn,f(xn)),... а на биссектрисе координатного угла — точки B0(x0,x0), B1(x1,x1),..., Bn(xn,xn),... Ломаная B0A0B1A1... BnAn... называется итерационной.
Постройте итерационные ломаные для следующих данных:
а) f (x) = 1 + $ {\dfrac{x}{2}}$,    x0 = 0, x0 = 8;
б) f (x) = $ {\dfrac{1}{x}}$,    x0 = 2;
в) f (x) = 2x - 1,    x0 = 0, x0 = 1, 125;
г) f (x) = - $ {\dfrac{3x}{2}}$ + 6,     x0 = $ {\dfrac{5}{2}}$;
д) f (x) = x2 + 3x - 3,    x0 = 1, x0 = 0, 99, x0 = 1, 01;
е) f (x) = $ \sqrt{1+x}$,    x0 = 0, x0 = 8;
ж) f (x) = $ {\dfrac{x^3}{3}}$ - $ {\dfrac{5x^2}{2}}$ + $ {\dfrac{25x}{6}}$ + 3,     x0 = 3.

ВверхВниз   Решение


Как вы думаете, среди четырёх последовательных натуральных чисел будет ли хотя бы одно делиться  а) на 2?  б) на 3?  в) на 4?  г) на 5?

ВверхВниз   Решение


В комнате стоят трёхногие табуретки и четвероногие стулья. Когда на все эти сидячие места уселись люди, в комнате оказалось 39 ног.
Сколько в комнате табуреток?

ВверхВниз   Решение


ВверхВниз   Решение


Докажите, что для монотонно возрастающей функции f (x) уравнения x = f (f (x)) и x = f (x) равносильны.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 420]      



Задача 61455

Тема:   [ Функции нескольких переменных ]
Сложность: 2+
Классы: 8,9,10,11

Определение. Пусть функция f (x, y) задана во всех точках плоскости с целыми координатами. Назовем функцию f (x, y) гармонической, если ее значение в каждой точке равно среднему арифметическому значений функции в четырех соседних точках, то есть:
f (x, y)=1/4(f (x+1, y)+ f (x-1, y)+f (x, y+1) + f (x, y-1)).
Пусть f (x, y) и g(x, y) — гармонические функции. Докажите, что для любых a и b функция af (x, y) + bg(x, y) также будет гармонической.

Прислать комментарий     Решение

Задача 64891

Тема:   [ Функции. Непрерывность (прочее) ]
Сложность: 2+
Классы: 10,11

Числовая функция  f такова, что для любых x и y выполняется равенство  f(x + y) = f(x) + f(y) + 80xy.  Найдите  f(1), если  f(0,25) = 2.

Прислать комментарий     Решение

Задача 116563

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 10,11

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Прислать комментарий     Решение

Задача 35148

Тема:   [ Функции одной переменной. Непрерывность ]
Сложность: 2+
Классы: 10,11

Постройте функцию, определенную во всех точках вещественной прямой и непрерывную ровно в одной точке.
Прислать комментарий     Решение


Задача 61320

Темы:   [ Монотонность, ограниченность ]
[ Итерации ]
Сложность: 2+
Классы: 8,9,10

Докажите, что для монотонно возрастающей функции f (x) уравнения x = f (f (x)) и x = f (x) равносильны.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 420]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .