ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

Вниз   Решение


Может ли среднее арифметическое 35 целых чисел равняться 6,35?

ВверхВниз   Решение


Средний возраст одиннадцати игроков футбольной команды – 22 года. Во время матча один из игроков получил травму и ушёл с поля. Средний возраст оставшихся на поле игроков стал равен 21 году. Сколько лет футболисту, получившему травму?

ВверхВниз   Решение


Геометрической интерпретацией итерационного процесса служит итерационная ломаная. Для ее построения на плоскости Oxy рисуется график функции f(x) и проводится биссектриса координатного угла — прямая y=x. Затем на графике функции отмечаются точки A0(x0,f(x0)), A1(x1,f(x1)),..., An(xn,f(xn)),... а на биссектрисе координатного угла — точки B0(x0,x0), B1(x1,x1),..., Bn(xn,xn),... Ломаная B0A0B1A1... BnAn... называется итерационной.
Постройте итерационные ломаные для следующих данных:
а) f (x) = 1 + $ {\dfrac{x}{2}}$,    x0 = 0, x0 = 8;
б) f (x) = $ {\dfrac{1}{x}}$,    x0 = 2;
в) f (x) = 2x - 1,    x0 = 0, x0 = 1, 125;
г) f (x) = - $ {\dfrac{3x}{2}}$ + 6,     x0 = $ {\dfrac{5}{2}}$;
д) f (x) = x2 + 3x - 3,    x0 = 1, x0 = 0, 99, x0 = 1, 01;
е) f (x) = $ \sqrt{1+x}$,    x0 = 0, x0 = 8;
ж) f (x) = $ {\dfrac{x^3}{3}}$ - $ {\dfrac{5x^2}{2}}$ + $ {\dfrac{25x}{6}}$ + 3,     x0 = 3.

ВверхВниз   Решение


Как вы думаете, среди четырёх последовательных натуральных чисел будет ли хотя бы одно делиться  а) на 2?  б) на 3?  в) на 4?  г) на 5?

ВверхВниз   Решение


В комнате стоят трёхногие табуретки и четвероногие стулья. Когда на все эти сидячие места уселись люди, в комнате оказалось 39 ног.
Сколько в комнате табуреток?

ВверхВниз   Решение


Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 161]      



Задача 102877

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
Сложность: 2
Классы: 6,7,8

Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?

Прислать комментарий     Решение

Задача 30327

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 2+
Классы: 6,7

Сколькими способами можно поставить на шахматную доску белого и чёрного королей так, чтобы получилась допустимая правилами игры позиция?

Прислать комментарий     Решение

Задача 78726

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 2+
Классы: 7,8

На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?

Прислать комментарий     Решение

Задача 116487

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 9,10

Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля?  ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)

Прислать комментарий     Решение

Задача 98378

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .