ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 5425]      



Задача 60463

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2-
Классы: 5,6,7

Разложите на простые множители числа 111, 1 111, 11 111, 111 111, 1 111 111.

Прислать комментарий     Решение

Задача 87981

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.
Прислать комментарий     Решение


Задача 87992

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2-
Классы: 5,6,7

Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?
Прислать комментарий     Решение


Задача 88069

Тема:   [ Простые числа и их свойства ]
Сложность: 2-
Классы: 5,6,7

Известно, что p > 3 и p  — простое число, т.е. оно делится только на единицу и на себя само. Как вы думаете: а) будут ли чётными числа (p + 1) и (p - 1); б) будет ли хотя бы одно из них делиться на 3?
Прислать комментарий     Решение


Задача 88070

Тема:   [ Простые числа и их свойства ]
Сложность: 2-
Классы: 5,6,7

Известно, что p > 3 и p  — простое число, т.е. оно делится только на единицу и на себя само. Как вы думаете, будет ли хотя бы одно из чисел (p + 1) и (p - 1) делиться на 4? А на 5?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 5425]      



© 2004-2015 МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .