ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Карасев Р.

В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 111729

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Объем помогает решить задачу ]
[ Длины и периметры (геометрические неравенства) ]
[ Неравенства с площадями ]
[ Наименьшая или наибольшая площадь (объем) ]
Сложность: 6-
Классы: 10,11

Пусть h  — наименьшая высота тетраэдра, d  — наименьшее расстояние между его противоположными ребрами. При каких t возможно неравенство d>th ?
Прислать комментарий     Решение


Задача 107711

Темы:   [ Четырехугольная пирамида ]
[ Перпендикуляр и наклонная ]
[ Против большей стороны лежит больший угол ]
[ Неравенства с углами ]
Сложность: 3
Классы: 10,11

Основание пирамиды Хеопса — квадрат, а её боковые грани — равные равнобедренные треугольники. Буратино лазил наверх и измерил угол грани при вершине. Получилось 100o. Может ли так быть?
Прислать комментарий     Решение


Задача 57544

Темы:   [ Угол (экстремальные свойства) ]
[ Центральная симметрия помогает решить задачу ]
[ Перегруппировка площадей ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9,10

Дан угол XAY и точка O внутри его. Проведите через точку O прямую, отсекающую от данного угла треугольник наименьшей площади.
Прислать комментарий     Решение


Задача 73545

Темы:   [ Покрытия ]
[ Теорема Хелли ]
[ Общие четырехугольники ]
[ Перпендикуляр и наклонная ]
Сложность: 5+
Классы: 8,9,10

Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.
Прислать комментарий     Решение


Задача 109666

Темы:   [ Гомотетия помогает решить задачу ]
[ Сфера, вписанная в тетраэдр ]
[ Метод ГМТ в пространстве ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 5+
Классы: 10,11

Автор: Карасев Р.

В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .