ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Даны две окружности радиусов R и r ( R>r ), имеющие внутреннее касание. Найдите радиус третьей окружности, касающейся первых двух окружностей и их общего диаметра.

Вниз   Решение


Докажите, что нетождественное проективное преобразование прямой имеет не более двух неподвижных точек.

ВверхВниз   Решение


Докажите, что проективное преобразование прямой однозначно определяется образами трех произвольных точек.

ВверхВниз   Решение


Может ли быть верным равенство  К×О×Т = У×Ч×Е×Н×Ы×Й,  если вместо букв в него подставить цифры от 1 до 9 (разным буквам соответствуют разные цифры)?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116903  (#9.1)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9,10

В остроугольном треугольнике ABC провели высоты AA1 и BB1, которые пересекаются в точке O. Затем провели высоту A1A2 треугольника OBA1 и высоту B1B2 треугольника OAB1. Докажите, что отрезок A2B2 параллелен стороне AB.

Прислать комментарий     Решение

Задача 116904  (#9.2)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10

Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116905  (#9.3)

Темы:   [ Построение треугольников по различным точкам ]
[ Построения с помощью вычислений ]
[ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
Сложность: 4
Классы: 8,9,10

В треугольнике ABC провели биссектрису CL. В треугольники CAL и CBL вписали окружности, которые касаются прямой AB в точках M и N соответственно. Затем все, кроме точек A, L, M и N, стерли. С помощью циркуля и линейки восстановите треугольник.

Прислать комментарий     Решение

Задача 116906  (#9.4)

Темы:   [ Правильные многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10

При каких  n > 3  правильный n-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

Прислать комментарий     Решение

Задача 116907  (#9.5)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10

ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что  AB = 2AD. Точки M и N на стороне AC таковы, что  AM = NC.  На продолжении стороны CB за точку B взята такая точка K, что  CN = BK.  Найдите угол между прямыми NK и DM.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .