ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 115492  (#2010.8.1)

Темы:   [ Ребусы ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР  трёхзначные числа, разные буквы обозначают различные цифры.)
Прислать комментарий     Решение


Задача 115493  (#2010.8.2)

Темы:   [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3
Классы: 6,7,8

На столе в виде треугольника выложены 28 монет одинакового размера (рис.). Известно, что суммарная масса любой тройки монет, которые попарно касаются друг друга, равна 10  г. Найдите суммарную массу всех 18  монет на границе треугольника.


Прислать комментарий     Решение

Задача 116424  (#2010.8.3)

Темы:   [ Средняя линия треугольника ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

В треугольнике ABC точка M – середина стороны AC, точка P лежит на стороне BC. Отрезок AP пересекает BM в точке O. Оказалось, что  BO = BP.
Найдите отношение OM : PC.

Прислать комментарий     Решение

Задача 116427  (#2010.8.4)

Темы:   [ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

  а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?
  А если богатырей
  б) десять?
  в) тридцать три?

Прислать комментарий     Решение

Задача 115496  (#2010.8.5)

Темы:   [ Средняя линия треугольника ]
[ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Описанные четырехугольники ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC точка I  — центр вписанной окружности. Точки M и N  — середины сторон BC и AC соответственно. Известно, что угол AIN прямой. Докажите, что угол  BIM  — также прямой.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .