ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На диске хранится 2013 файлов размером 1 Мб, 2 Мб, 3 Мб, ..., 2012 Мб, 2013 Мб. Можно ли их распределить по трём папкам так, чтобы в каждой папке было одинаковое количество файлов и все три папки имели один и тот же размер (в Мб)?

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 64562  (#8.2.3)

Темы:   [ Уравнения в целых числах ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Найдутся ли такие три натуральных числа, что сумма каждых двух из них – степень тройки?

Прислать комментарий     Решение

Задача 64563  (#8.3.1)

Темы:   [ Текстовые задачи (прочее) ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 7,8,9

Три математика ехали в разных вагонах одного поезда. Когда поезд подъезжал к станции, математики насчитали на перроне 7, 12 и 15 скамеек. А когда поезд отъезжал, один из математиков насчитал скамеек в три раза больше, чем другой. А сколько скамеек насчитал третий?

Прислать комментарий     Решение

Задача 64564  (#8.3.2)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол (прочее) ]
Сложность: 3
Классы: 8,9

В квадрате АВСD со стороной 1 точка F – середина стороны ВС, Е – основание перпендикуляра, опущенного из вершины А на DF.
Найдите длину ВЕ.

Прислать комментарий     Решение

Задача 64565  (#8.3.3)

Темы:   [ Системы точек ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Можно ли расставить шесть фотографов на площади таким образом, чтобы каждый из них мог сфотографировать ровно четырёх других? (Фотографы А и В могут сфотографировать друг друга, если на отрезке АВ нет других фотографов.)

Прислать комментарий     Решение

Задача 64566  (#8.4.1)

Темы:   [ Взвешивания ]
[ Арифметическая прогрессия ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

На диске хранится 2013 файлов размером 1 Мб, 2 Мб, 3 Мб, ..., 2012 Мб, 2013 Мб. Можно ли их распределить по трём папкам так, чтобы в каждой папке было одинаковое количество файлов и все три папки имели один и тот же размер (в Мб)?

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .