ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В музее Гугенхайм в Нью-Йорке есть скульптура, имеющая форму куба. Жук, севший на одну из вершин, хочет как можно быстрее осмотреть скульптуру, чтобы перейти к другим экспонатам (для этого достаточно попасть в противоположную вершину куба). Какой путь ему выбрать?

Вниз   Решение


Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что  DE || AC.  Точки P и Q на меньшей дуге AC окружности ω таковы, что  DP || EQ.  Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что  ∠XBY + ∠PBQ = 180°.

ВверхВниз   Решение


Найдите объём правильной треугольной пирамиды, боковые рёбра которой, наклонены к плоскости основания под углом α и удалены от середины противоположной стороны основания на расстояние l .

ВверхВниз   Решение


В пирамиде ABCD двугранные углы с рёбрами AB , BC и CA равны α1 , α2 и α3 соответственно, а площади треугольников ABD , BCD и CAD равны соответственно S1 , S2 и S3 . Площадь треугольника ABC равна S . Докажите, что S = S1 cos α1 + S2 cos α2 + S3 cos α3 (некоторые из углов α1 , α2 и α3 могут быть тупыми).

ВверхВниз   Решение


Докажите, что число Фибоначчи Fn совпадает с ближайшим целым числом к $ {\dfrac{\varphi^n}{\sqrt5}}$, то есть

Fn = $\displaystyle \left[\vphantom{\dfrac{\varphi^n}{\sqrt5}+\dfrac{1}{2}}\right.$$\displaystyle {\dfrac{\varphi^n}{\sqrt5}}$ + $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left.\vphantom{\dfrac{\varphi^n}{\sqrt5}+\dfrac{1}{2}}\right]$.


ВверхВниз   Решение


Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.
Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 109932  (#97.4.8.6)

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9

Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.
Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

Прислать комментарий     Решение

Задача 109933  (#97.4.8.7)

Темы:   [ Деление с остатком ]
[ Уравнения в целых числах ]
[ Простые числа и их свойства ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8,9

Найдите все такие пары простых чисел p и q, что  p³ – q5 = (p + q)².

Прислать комментарий     Решение

Задача 109918  (#97.4.8.8)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?

б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?

Прислать комментарий     Решение

Задача 108177  (#97.4.9.1)

Темы:   [ Правильные многоугольники ]
[ Вписанные и описанные окружности ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3+
Классы: 8,9

Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.

Прислать комментарий     Решение

Задача 109922  (#97.4.9.2)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске записаны числа 1, 2, 3, ..., 1000. Двое по очереди стирают по одному числу. Игра заканчивается, когда на доске остаются два числа. Если их сумма делится на 3, то побеждает тот, кто делал первый ход, если нет – то его партнер. Кто из них выиграет при правильной игре?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .