Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 128]
|
|
|
Сложность: 4- Классы: 10,11
|
В прямоугольном параллелепипеде АВСDA'B'C'D' АВ = ВС = а, AA' = b. Его ортогонально спроектировали на некоторую плоскость, содержащую ребро CD. Найдите наибольшее значение площади проекции.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Существует ли многогранник, проекциями которого на три попарно перпендикулярные плоскости являются: треугольник, четырёхугольник и пятиугольник?
|
|
|
Сложность: 4 Классы: 10,11
|
На плоскости нарисованы два выпуклых многоугольника P и Q. Для каждой стороны многоугольника P многоугольник Q можно зажать между двумя прямыми, параллельными этой стороне. Обозначим через h расстояние между этими прямыми, а через l – длину стороны и вычислим произведение lh. Просуммировав такие произведения по всем сторонам P, получим некоторую величину (P, Q). Докажите, что
(P, Q) = (Q, P).
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Правильный треугольник, лежащий в плоскости $\alpha$, ортогонально спроектировали на непараллельную ей плоскость $\beta$, полученный треугольник ортогонально спроектировали на плоскость $\gamma$ и получили снова правильный треугольник. Докажите, что
а) угол между плоскостями $\alpha$ и $\beta$ равен углу между плоскостями $\beta$ и $\gamma$;
б) плоскость $\beta$ пересекает плоскости $\alpha$ и $\gamma$ по перпендикулярным друг другу прямым.
Один выпуклый многогранник расположен внутри другого. Докажите,
что площадь поверхности внешнего многогранника больше площади
поверхности внутреннего.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 128]