|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны шесть слов:
Пусть a и b — целые числа. Напишем число b справа от числа a. Если число a чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число a1 напишем под числом a. Справа от числа a1 напишем число 2b. С числом a1 проделаем ту же операцию, что и с числом a, и, получив число a2, напишем его под числом a1. Справа от числа a2 напишем число 4b и так далее. Этот процесс продолжаем до тех пор, пока не получим в левом столбце число 1. Доказать, что сумма тех чисел правого столбца, слева от которых стоят нечётные числа, равна произведению ab. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]
Разделите многочлены с остатком:
Найдите остаток от деления многочлена P(x) = x5 – 17x + 1 на x + 2.
Найдите остаток от деления многочлена P(x) = x81 + x27 + x9 + x³ + x на
При каких p и q двучлен x4 + 1 делится на x² + px + q?
Докажите, что из равенства P(x) = Q(x)T(x) + R(x) следует соотношение (P(x), Q(x)) = (Q(x), R(x)).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|