ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 61528

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что  
Числа Pkl(n) определены в задаче 61525.

Прислать комментарий     Решение

Задача 78237

Темы:   [ Классическая комбинаторика (прочее) ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 10,11

Улитка должна проползти вдоль линий клетчатой бумаги путь длины 2n, начав и кончив свой путь в данном узле.
Доказать, что число различных её маршрутов равно  

Прислать комментарий     Решение

Задача 116699

Темы:   [ Степень вершины ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 11

На собрание пришло n человек  (n > 1).  Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
  а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
  б) Покажите, что n может быть больше 4.

Прислать комментарий     Решение

Задача 65883

Темы:   [ Классическая комбинаторика (прочее) ]
[ Процессы и операции ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 5
Классы: 9,10,11

Автор: Петров Ф.

На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать n ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать n ходов было бы столько же.

Прислать комментарий     Решение

Задача 66165

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Теория графов (прочее) ]
[ Оценка + пример ]
Сложность: 5
Классы: 9,10,11

У фокусника и помощника есть колода с картами; одна сторона ("рубашка") у всех карт одинакова, а другая окрашена в один из 2017 цветов (в колоде по 1000000 карт каждого цвета). Фокусник и помощник собираются показать следующий фокус. Фокусник выходит из зала, а зрители выкладывают на стол в ряд  n > 1  карт рубашками вниз. Помощник смотрит на эти карты, а затем все, кроме одной, переворачивает рубашкой вверх, не меняя их порядка. Затем входит фокусник, смотрит на стол, указывает на одну из закрытых карт и называет её цвет. При каком наименьшем k фокусник может заранее договориться с помощником так, чтобы фокус гарантированно удался?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .