Страница:
<< 5 6 7 8 9 10 11 [Всего задач: 53]
|
|
|
Сложность: 4+ Классы: 10,11
|
Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого i = 1, 2, ..., n в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем An+1 = A1). Докажите, что построенные треугольники покрывают всё основание.
|
|
|
Сложность: 7 Классы: 10,11
|
Дана сфера
радиуса 1. На ней расположены равные окружности γ
0, γ
1, ..., γ
n радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ
1, ..., γ
n; кроме того, касаются друг друга окружности γ
1 и γ
2, γ
2 и γ
3, ..., γ
n и γ1. При каких
n это возможно? Вычислите соответствующий
радиус r.
|
|
|
Сложность: 6 Классы: 10,11
|
У выпуклого многогранника внутренний двугранный угол при каждом
ребре острый. Сколько может быть граней у многогранника?
Страница:
<< 5 6 7 8 9 10 11 [Всего задач: 53]