ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]      



Задача 35678

Темы:   [ Перебор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 6,7,8,9

Николай с сыном и Петр с сыном были на рыбалке. Николай поймал столько же рыб, сколько и его сын, а Петр – втрое больше, чем его сын. Всего было поймано 25 рыб. Как зовут сына Петра?

Прислать комментарий     Решение

Задача 32061

Темы:   [ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7,8

За круглым столом сидело а) 15; б) 20 человек. Они хотят пересесть так, чтобы те, кто раньше сидел рядом, теперь сидели бы через два человека. Возможно ли это?

Прислать комментарий     Решение


Задача 35683

Темы:   [ Перебор случаев ]
[ Криптография ]
Сложность: 3
Классы: 7,8,9

Буквы русского алфавита занумерованы в соответствии с таблицей: $ \begin{array}{cccccccccccccccccccccc} А & Б & В & Г & Д & Е & Ж & З & И & К & ... & Ф & Х & Ц & Ч & Ш & Щ & Ь & Ы & Э & Ю & Я \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & ... & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \end{array} $ Для зашифрования сообщения, состоящего из n букв, выбирается ключ K - некоторая последовательность из n букв приведенного выше алфавита. Зашифрование каждой буквы сообщения состоит в сложении ее номера в таблице с номером соответствующей буквы ключевой последовательности и замене полученной суммы на букву алфавита, номер которой имеет тот же остаток от деления на 30, что и эта сумма. Прочтите шифрованное сообщение: РБЬНПТСИТСРРЕЗОХ, если известно, что шифрующая последовательность не содержала никаких букв, кроме А, Б и В. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 78055

Темы:   [ Перебор случаев ]
[ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 10,11

Пять человек играют несколько партий в домино (два на два) так, что каждый играющий имеет каждого из остальных один раз партнёром и два раза противником. Найти количество сыгранных партий и все способы распределения играющих.

Прислать комментарий     Решение

Задача 103856

Темы:   [ Перебор случаев ]
[ Четность и нечетность ]
[ Доказательство от противного ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8

Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .