ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Можно ли вписать в окружность выпуклый семиугольник A1A2A3A4A5A6A7 с углами A1 = 140o, A2 = 120o, A3 = 130o, A4 = 120o, A5 = 130o, A6 = 110o, A7 = 150o?

Вниз   Решение


Современные системы управления базами данных поддерживают широкий класс различных операций с датами. Для решения этой задачи Вы должны написать программу, реализующую некоторые из таких операций. Ваша программа должна обрабатывать выражения следующих типов:
    <Дата>
    <Дата> + <Сдвиг>
    <Дата> - <Сдвиг>
    <Дата> - <Дата>

Здесь <Дата> задается в одном из следующих трех форматов:
А) дд.мм.гггг (например, 21.06.1998 ). В этой записи день и месяц задаются в точности двумя десятичными цифрами, год – ровно четырьмя.
Б) д месяца г года (например, 21 июня 1998 года ). В этом формате могут присутствовать ведущие нули (например, 01 июня 198 года ).
В) сегодня – текущая дата, установленная в компьютере.
<Сдвиг> задается в виде [L лет ] [M месяцев ] [N недель ] [D дней ]. Квадратные скобки здесь означают, что некоторые из указанных четырех составных частей могут опускаться (но не все сразу). Слова «лет», «месяцев», «недель», «дней» склоняются по правилам русского языка: 1 год, 5 лет, 2 месяца, 5 месяцев и т.д. 

Значением выражений первых трех типов является дата. В случае выражения первого типа значением является сама <Дата>. В случае выражений второго и третьего типа вычисление искомой даты происходит следующим образом: сначала прибавляется (либо вычитается) L лет, затем M месяцев, после чего N недель и, наконец, D дней. Если в течение этого процесса получается несуществующее число месяца, то берется последнее число этого месяца (см. пример). Результатом выражения четвертого типа является количество дней между двумя указанными датами. 

Входные данные

Входной файл содержит последовательность выражений, каждое из которых записано в отдельной строке. Большие и маленькие буквы в выражениях не различаются.

Выходные данные

Для заданных выражений требуется вывести в выходной файл их значения в том же порядке, в котором указаны выражения. Для выражений первых трех типов нужно выдать дату в формате Б, а затем через запятую указать день недели, соответствующий этой дате. Для выражений четвертого типа необходимо вывести одно целое число. Каждое значение выводится в отдельную строку выходного файла.

Пример входного файла

30 января 1998 года + 1 месяц 1 день
21 июня 1998 года - 1.06.1998

Пример выходного файла

1 марта 1998 года, воскресенье
20

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 60867

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Правильный (равносторонний) треугольник ]
[ Рациональные и иррациональные числа ]
Сложность: 4
Классы: 9,10,11

Можно ли нарисовать правильный треугольник с вершинами в узлах квадратной сетки?

Прислать комментарий     Решение

Задача 64351

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Принцип Дирихле (площадь и объем) ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4+
Классы: 9,10

Из клетчатого квадрата 55×55 вырезали по границам клеток 400 трёхклеточных уголков    (повёрнутых как угодно) и ещё 500 клеток.
Докажите, что какие-то две вырезанные фигуры имеют общий отрезок границы.

Прислать комментарий     Решение

Задача 109939

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10,11

Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть A – количество черных отрезков на периметре, B – количество белых, и пусть многоугольник состоит из a черных и b белых клеток. Докажите, что A-B=4(a-b) .
Прислать комментарий     Решение


Задача 58204

Тема:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 4+
Классы: 9,10

Можно ли прямоугольный треугольник с целыми сторонами расположить так, чтобы его вершины лежали в узлах целочисленной решетки, но ни одна из его сторон не проходила по линиям решетки?
Прислать комментарий     Решение


Задача 78089

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Метод координат на плоскости ]
Сложность: 4+
Классы: 10,11

На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .