ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Мачеха, уезжая на бал, дала Золушке мешок, в котором были перемешаны мак и просо, и велела перебрать их. Когда Золушка уезжала на бал, она оставила три мешка: в одном было просо, в другом — мак, а в третьем — еще не разобранная смесь. Чтобы не перепутать мешки, Золушка к каждому из них прикрепила по табличке: «Мак», «Просо» и «Смесь».
Мачеха вернулась с бала первой и нарочно поменяла местами все таблички так, чтобы на каждом мешке оказалась неправильная надпись. Ученик Феи успел предупредить Золушку, что теперь ни одна надпись на мешках не соответствует действительности. Тогда Золушка достала только одно-единственное зернышко из одного мешка и, посмотрев на него, сразу догадалась, где что лежит. Как она это сделала?

Вниз   Решение


Треугольник Паскаля

Треугольник Паскаля строится следующим образом. Первая строка состоит
из одного числа, равного единице. Каждая следующая
содержит на одно число больше, чем предыдущая. Первое и последнее
из этих чисел равны 1, а все остальные вычисляются как сумма числа,
стоящего в предыдущей строке над ним и числа, стоящего в предыдущей же
строке слева от него.

Входные данные. В файле INPUT.TXT записано одно число N (0<=N<=30).

Выходные данные. В файл OUTPUT.TXT вывести N строк треугольника Паскаля.
Примечание. Все числа в треугольнике Паскаля при указанных ограничениях
входят в Longint.

Пример файла INPUT.TXT
8

Пример файла OUTPUT.TXT
1
1  1
1  2  1
1  3  3  1
1  4  6  4  1
1  5 10 10  5  1
1  6 15 20 15  6  1
1  7 21 35 35 21  7  1

ВверхВниз   Решение


В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?

ВверхВниз   Решение


Автор: Фольклор

Hа доске была нарисована система координат и отмечены точки  A(1, 2)  и  B(3, 1).  Cистему координат стерли.
Bосстановите ее по двум отмеченным точкам.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 88]      



Задача 116132

Темы:   [ Шестиугольники ]
[ Правильные многоугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Автор: Фольклор

B правильном шестиугольнике ABCDEF на прямой AF взята точка X так, что  ∠XCD = 45°.  Hайдите угол FXE.

Прислать комментарий     Решение

Задача 52957

Темы:   [ Шестиугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Правильные многоугольники ]
Сложность: 3-
Классы: 8,9

На каком расстоянии от сторон правильного шестиугольника находится центр окружности, описанной около данного шестиугольника, если известно, что хорда этой окружности, равная 3, удалена от её центра на расстояние, равное 0,5?

Прислать комментарий     Решение

Задача 34900

Темы:   [ Шестиугольники ]
[ Многоугольники (неравенства) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 8,9

Каждая из сторон выпуклого шестиугольника имеет длину больше 1. Всегда ли в нем найдется диагональ длины больше 2?
Прислать комментарий     Решение


Задача 35569

Темы:   [ Шестиугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 9,10

Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны.
Прислать комментарий     Решение


Задача 52955

Темы:   [ Шестиугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 8,9

Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .