ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны.

Вниз   Решение


Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$

ВверхВниз   Решение


``1 = - 1''. Изучив комплексные числа, Коля Васин решил вывести формулу, которая носила бы его имя. После нескольких попыток ему это удалось:

$\displaystyle \sqrt{\frac{1}{-1}}$ = $\displaystyle \sqrt{\frac{-1}{1}}$ $\displaystyle \Rightarrow$ $\displaystyle {\frac{\sqrt1}{\sqrt{-1}}}$ = $\displaystyle {\frac{\sqrt{-1}}{\sqrt1}}$ $\displaystyle \Rightarrow$ $\displaystyle \sqrt{1}$$\displaystyle \sqrt{1}$ = $\displaystyle \sqrt{-1}$$\displaystyle \sqrt{-1}$ $\displaystyle \Rightarrow$ 1 = - 1.

После некоторых размышлений, Коля придумал более короткое доказательство своего тождества:

-1 = i2 = $\displaystyle \sqrt{-1}$ . $\displaystyle \sqrt{-1}$ = $\displaystyle \sqrt{(-1)(-1)}$ = $\displaystyle \sqrt{1}$ = 1.

Не ошибся ли где-нибудь Коля Васин?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 83]      



Задача 53536

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

Боковая сторона AD и основание CD трапеции ABCD равны k, а основание  AB = 2k.  Диагональ AC равна l. Найдите боковую сторону BC.

Прислать комментарий     Решение

Задача 54173

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Медиана, проведенная к гипотенузе ]
[ Ромбы. Признаки и свойства ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

Прислать комментарий     Решение

Задача 54210

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Найдите высоту трапеции, боковые стороны которой равны 6 и 8, а основания равны 4 и 14.

Прислать комментарий     Решение

Задача 54227

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD основание  AD = 2,  основание  BC = 1.  Боковые стороны  AB = CD = 1.  Найдите диагонали трапеции.

Прислать комментарий     Решение

Задача 54261

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Параллельные стороны трапеции равны 25 и 4, а непараллельные – 20 и 13. Найдите высоту трапеции.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .