Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 69]
На плоскости дано конечное число попарно непараллельных прямых,
причем через точку пересечения любых двух из них проходит еще одна
из данных прямых. Докажите, что все эти прямые проходят через одну точку.
На плоскости дано
n точек и отмечены середины
всех отрезков с концами в этих точках. Докажите, что
различных отмеченных точек не менее 2
n - 3.
|
|
Сложность: 6 Классы: 8,9,10,11
|
Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек
A и B существует такая
точка С этого множества, что треугольник
ABC равносторонний. Сколько точек может содержать такое множество?
|
|
Сложность: 6+ Классы: 10,11
|
Дана треугольная пирамида. Леша хочет выбрать два ее скрещивающихся ребра и на них, как на диаметрах, построить шары.
Всегда ли он может выбрать такую пару, что любая точка пирамиды лежит хотя бы в одном из этих шаров?
|
|
Сложность: 2+ Классы: 6,7,8
|
Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 69]