ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 71]      



Задача 78615

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Покрытия ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3+
Классы: 8,9,10

Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа освещает круг радиуса, равного высоте, на которой она висит?
Прислать комментарий     Решение


Задача 116703

Темы:   [ Наглядная геометрия в пространстве ]
[ Принцип Дирихле (углы и длины) ]
[ Частные случаи тетраэдров (прочее) ]
Сложность: 3+
Классы: 11

На плоской горизонтальной площадке стоят пять прожекторов, каждый из которых испускает лазерный луч под одним из двух острых углов α или β к площадке и может вращаться лишь вокруг вертикальной оси, проходящей через вершину луча. Известно, что любые четыре из этих прожекторов можно повернуть так, что все четыре испускаемых ими луча пересекутся в одной точке. Обязательно ли можно так повернуть все пять прожекторов, чтобы все пять лучей пересеклись в одной точке?

Прислать комментарий     Решение

Задача 58081

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 7,8,9

Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.
Прислать комментарий     Решение


Задача 102796

 [Круги в квадрате]
Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Принцип Дирихле (углы и длины) ]
[ Окружности (прочее) ]
Сложность: 3+
Классы: 7,8,9

Внутри квадрата со стороной 1 расположены несколько кругов, сумма радиусов которых равна 0,51. Доказать, что найдется прямая, которая параллельна одной из сторон квадрата и пересекает, по крайней мере, 2 круга.
Прислать комментарий     Решение


Задача 64820

Темы:   [ Арифметическая прогрессия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4-
Классы: 10,11

Имеется бесконечная арифметическая прогрессия натуральных чисел с ненулевой разностью. Из каждого её члена извлекли квадратный корень и, если получилось нецелое число, округлили до ближайшего целого. Может ли быть, что все округления были в одну сторону?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .