ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что для любых x1,..., xn $ \in$ [0; $ \pi$] справедливо неравенство:

sin$\displaystyle \left(\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right.$$\displaystyle {\dfrac{x_1+\ldots+x_n}{n}}$$\displaystyle \left.\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right)$ $\displaystyle \geqslant$ $\displaystyle {\dfrac{\sin
x_1+\ldots+ \sin x_n}{n}}$.


Вниз   Решение


Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.)

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 122]      



Задача 54034

Темы:   [ Против большей стороны лежит больший угол ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9

BD — биссектриса треугольника ABC, причём AD > CD. Докажите, что AB > BC.

Прислать комментарий     Решение


Задача 54842

Темы:   [ Против большей стороны лежит больший угол ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

Из вершины L ромба KLMN проведена прямая, пересекающая прямую KN в точке P. Диагональ KM делит в точке Q отрезок LP так, что LQ : QP = 9 : 10. Найдите синус угла LKN, если треугольник KLP тупоугольный, а $ \angle$PLM = 60o.

Прислать комментарий     Решение


Задача 55174

Темы:   [ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

На продолжении стороны AC треугольника ABC отложен отрезок  CD = CB.  Докажите, что если  AC > BC,  то угол ABD – тупой.

Прислать комментарий     Решение

Задача 55192

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенство треугольника ]
Сложность: 4
Классы: 8,9

Докажите, что если в выпуклом четырёхугольнике ABCD имеет место неравенство AB $ \geqslant$ AC, то BD > DC.

Прислать комментарий     Решение


Задача 55200

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенства с углами ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD углы A и B равны, а $ \angle$D > $ \angle$C. Докажите, что AD < BC.

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .