ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1001]      



Задача 54852

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD  (BC || AD)  диагонали пересекаются в точке M,  BC = b,  AD = a.
Найдите отношение площади треугольника ABM к плошади трапеции ABCD.

Прислать комментарий     Решение

Задача 54854

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В окружности проведены диаметр MN и хорда AB, параллельная диаметру MN. Касательная к окружности в точке M пересекает прямые NA и NB соответственно в точках P и Q. Известно, что  MP = p,  MQ = q.  Найдите MN.

Прислать комментарий     Решение

Задача 54856

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке P. Хорда PQ параллельна катету BC. Прямая BQ пересекает катет AC в точке D. Известно, что  AC = b,  DC = d.  Найдите BC.

Прислать комментарий     Решение

Задача 54874

Темы:   [ Признаки подобия ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Биссектриса одного из острых углов прямоугольного треугольника высотой, опущенной на гипотенузу, делится на отрезки, отношение которых равно
1 + ,  считая от вершины. Найдите острые углы треугольника.

Прислать комментарий     Решение

Задача 54891

Темы:   [ Две пары подобных треугольников ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Прямая, проходящая через точку пересечения медиан треугольника ABC, пересекает стороны BA и BC в точках A' и C' соответственно. При этом
BA' < BA = 3,  BC = 2,  BA'·BC' = 3.  Найдите BA'.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1001]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .