ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1001]      



Задача 54924

Темы:   [ Две пары подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD точки E и F лежат соответственно на сторонах AB и BC, M – точка пересечения прямых AF и DE, причём  AE = 2BE,
а  BF = 3CF.  Найдите отношение  AM : MF.

Прислать комментарий     Решение

Задача 54972

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Через некоторую точку, взятую внутри треугольника, проведены три прямые, параллельные сторонам. Эти прямые разбивают треугольник на шесть частей, три из которых – треугольники с площадями S1, S2, S3. Найдите площадь S данного треугольника.

Прислать комментарий     Решение

Задача 54978

Темы:   [ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Трапеция ABCD разделена прямой, параллельной её основаниям AD и BC, на две равновеликие трапеции.
Найдите отрезок этой прямой, заключённый между боковыми сторонами, если основания трапеции равны a и b.

Прислать комментарий     Решение

Задача 54980

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

Точки P и Q расположены на стороне BC треугольника ABC, причём  BP : PQ : QC = 1 : 2 : 3.  Точка R делит сторону AC этого треугольника так, что
AR : RC = 1 : 2.  Чему равно отношение площади четырёхугольника PQST к площади треугольника ABC, если S и T – точки пересечения прямой BR с прямыми AQ и AP соответственно?

Прислать комментарий     Решение

Задача 55014

Темы:   [ Подобные треугольники (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Трапеции (прочее) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площадь каждого из треугольников ABE и DCE равна 1, площадь всего четырёхугольника не превосходит 4,  AD = 3.  Найдите сторону BC.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1001]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .