ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 586]      



Задача 32784

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 7,8

Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга?
Прислать комментарий     Решение


Задача 21972

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 6,7,8

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Прислать комментарий     Решение

Задача 21977

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.

Прислать комментарий     Решение

Задача 21986

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Прислать комментарий     Решение

Задача 21987

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
[ Разложение на множители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 6,7,8

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 586]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .