Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 277]
|
|
|
Сложность: 4- Классы: 7,8,9,10,11
|
На одной из клеток поля 8×8 зарыт клад. Вы находитесь с металлоискателем в центре одной из угловых клеток этого поля и передвигаетесь, переходя в центры соседних по стороне клеток. Металлоискатель срабатывает, если вы оказались на той клетке, где зарыт клад, или в одной из соседних с ней по стороне клеток. Можно ли гарантированно указать клетку, где зарыт клад, пройдя расстояние не более 26?
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Было 100 дверей, у каждой свой ключ (отпирающий только эту дверь). Двери пронумерованы числами 1, 2, ..., 100, ключи тоже, но, возможно, с ошибками: номер ключа совпадает с номером двери или отличается на 1. За одну попытку можно выбрать любой ключ, любую дверь и проверить, подходит ли этот ключ к этой двери. Можно ли гарантированно узнать, какой ключ какую дверь открывает, сделав не более
а) 99 попыток;
б) 75 попыток;
в) 74 попытки.
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно 4 фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке?
На клетчатой доске лежат доминошки, не касаясь даже углами. Каждая доминошка занимает две соседние (по стороне) клетки доски. Нижняя левая и правая верхняя клетки доски свободны. Всегда ли можно пройти из левой нижней клетки в правую верхнюю, делая ходы только вверх и вправо на соседние по стороне клетки и не наступая на доминошки, если доска имеет размеры
а) $100\times101$ клеток;
б) $100\times100$ клеток?
100 чисел, среди которых есть положительные и отрицательные, выписаны в ряд.
Подчеркнуто, во-первых, каждое положительное число, а во-вторых, каждое число,
сумма которого со следующим положительна. Может ли сумма всех подчеркнутых
чисел оказаться отрицательной? Равной нулю?
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 277]