ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 255]      



Задача 35117

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

Несколько камней весят вместе 10 т, при этом каждый из них весит не более 1 т.
  а) Докажите, что этот груз можно за один раз увезти на пяти трёхтонках.
  б) Приведите пример набора камней, удовлетворяющих условию, для которых четырёх трёхтонок может не хватить, чтобы увезти груз за один раз.

Прислать комментарий     Решение

Задача 35171

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9,10

На экране терминала с доступом к "Матрице" горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Хакер Нео имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным? Добившись этого, он зациклит действия агентов и спасёт своих друзей.

Прислать комментарий     Решение

Задача 35616

Темы:   [ Теория алгоритмов (прочее) ]
[ Криптография ]
Сложность: 3+
Классы: 9,10

Сообщение, зашифрованное в пункте А шифром простой замены в алфавите из букв русского языка и знака пробела (–) между словами, передается в пункт Б отрезками по 12 символов. При передаче очередного отрезка сначала передаются символы, стоящие на чётных местах в порядке возрастания их номеров, начиная со второго, а затем – символы, стоящие на нечётных местах (также в порядке возрастания их номеров), начиная с первого. В пункте Б полученное шифрованное сообщение дополнительно шифруется с помощью некоторого другого шифра простой замены в том же алфавите, а затем таким же образом, как и из пункта А, передается в пункт В. По перехваченным в пункте В отрезкам:
    СО–ГЖТПНБЛЖО
    РСТКДКСПХЕУБ
    –Е–ПФПУБ–ЮОБ
    СП–ЕОКЖУУЛЖЛ
    СМЦХБЭКГОЩПЫ
    УЛКЛ–ИКНТЛЖГ
восстановите исходное сообщение, зная, что в одном из переданных отрезков зашифровано слово КРИПТОГРАФИЯ.

Прислать комментарий     Решение

Задача 35741

Темы:   [ Теория алгоритмов (прочее) ]
[ Ребусы ]
[ Арифметика остатков (прочее) ]
[ Криптография ]
Сложность: 3+
Классы: 9,10,11

Каждую букву исходного сообщения заменили её двузначным порядковым номером в русском алфавите согласно таблице:

Полученную цифровую последовательность разбили (справа налево) на трёхзначные цифровые группы без пересечений и пропусков. Затем каждое из полученных трёхзначных чисел умножили на 77 и оставили только три последние цифры произведения. В результате получилась следующая последовательность цифр:  317564404970017677550547850355.  Восстановите исходное сообщение.

Прислать комментарий     Решение

Задача 35745

Темы:   [ Теория алгоритмов (прочее) ]
[ Арифметика остатков (прочее) ]
[ Криптография ]
Сложность: 3+
Классы: 8,9

  На каждой из трёх осей установлено по одной вращающейся шестерёнке и неподвижной стрелке. Шестеренки соединены последовательно. На первой шестерёнке 33 зубца, на второй – 10, на третьей – 7. На каждом зубце первой шестерёнки по часовой стрелке написано по одной букве русского языка в алфавитном порядке:

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я.
  На зубцах второй и третьей шестерёнки в порядке возрастания по часовой стрелке написаны цифры от 0 до 9 и от 0 до 6 соответственно. Когда стрелка первой оси указывает на букву, стрелки двух других осей указывают на цифры.
  Буквы сообщения шифруются последовательно. Зашифрование производится вращением первой шестерёнки против часовой стрелки до первого попадания шифруемой буквы под стрелку. В этот момент последовательно выписываются цифры, на которые указывают вторая и третья стрелки. В начале шифрования стрелка 1-го колеса указывала на букву А, а стрелки 2-го и 3-го колес – на цифру 0.
  Зашифруйте слово  О Л И М П И А Д А.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .