ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 202]      



Задача 61264

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 4-
Классы: 9,10,11

Выпишите уравнение, корнем которого будет число     Запишите число α без помощи радикалов.

Прислать комментарий     Решение

Задача 61270

Темы:   [ Уравнения высших степеней (прочее) ]
[ Кубические многочлены ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Методы решения задач с параметром ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

Найдите все действительные значения a и b, при которых уравнения  x³ + ax² + 18 = 0,   x³ + bx + 12 = 0  имеют два общих корня, и определите эти корни.

Прислать комментарий     Решение

Задача 61276

Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрические уравнения ]
Сложность: 4-
Классы: 9,10,11

Решите уравнения
  а)  x³ – 3x – 1 = 0;
  б)  x³ – 3x = 0.
Укажите в явном виде все корни этих уравнений.

Прислать комментарий     Решение

Задача 61282

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Тригонометрические замены ]
Сложность: 4-
Классы: 9,10,11

Решите систему
    y = 2x² – 1,
    z = 2y² – 1,
    x = 2z² – 1.

Прислать комментарий     Решение

Задача 61349

Тема:   [ Системы линейных уравнений ]
Сложность: 4-
Классы: 8,9,10,11

Решите системы уравнений:

а)   x1 + x2 + x3 = 0,
      x2 + x3 + x4 = 0,
      ...
      x99 + x100 + x1 = 0,
      x100 + x1 + x2 = 0;

б)   x + y + z = a,
      y + z + t = b,
      y + z + t = c,
      t + x + y = d;

в)   x1 + x2 + x3 + x4 = 2a1,
      x1 + x2x3x4 = 2a2,
      x1x2 + x3x4 = 2a3,
      x1x2x3 + x4 = 2a4;

г)   x1 + 2x2 + 3x3 + ... + nxn = a1,
      nx1 + x2 + 2x3 + ... + (n – 1)nxn = a2,
      ...
      2x1 + 3x2 + 4x3 + ... + xn = an.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .