ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 233]      



Задача 109842

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 1,2

Последовательности положительных чисел (xn) и (yn) удовлетворяют условиям     при всех натуральных n. Докажите, что если все числа x1, x2, y1, y2 больше 1, то  xn > yn  при каком-нибудь натуральном n.

Прислать комментарий     Решение

Задача 60577

Темы:   [ Числа Фибоначчи ]
[ Системы счисления (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Фибоначчиева система счисления. Докажите, что произвольное натуральное число n, не превосходящее Fm, единственным образом можно представит в виде

n = $\displaystyle \sum\limits_{k=2}^{m}$bkFk,

где все числа b2, ..., bm равны 0 либо 1, причем среди этих чисел нет двух единиц стоящих рядом, то есть bkbk + 1 = 0 (2 $ \leqslant$ k $ \leqslant$ m - 1). Для записи числа в фибоначчиевой системе счисления используется обозначение:

n = (bk...b2)F.


Прислать комментарий     Решение

Задача 61474

Темы:   [ Линейные рекуррентные соотношения ]
[ Индукция (прочее) ]
[ Геометрическая прогрессия ]
[ Классическая комбинаторика (прочее) ]
[ Дискретное распределение ]
[ Производящие функции ]
Сложность: 4+
Классы: 10,11

Лягушка прыгает по вершинам шестиугольника ABCDEF, каждый раз перемещаясь в одну из соседних вершин.
  а) Сколькими способами она может попасть из A в C за n прыжков?
  б) Тот же вопрос, но при условии, что ей нельзя прыгать в D?
Лягушка-сапер.
  в) Пусть путь лягушки начинается в вершине A, а в вершине D находится мина. Каждую секунду она делает очередной прыжок. Какова вероятность того, что она еще будет жива через n секунд?
  г)* Какова средняя продолжительность жизни таких лягушек?

Прислать комментарий     Решение

Задача 61480

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4+
Классы: 9,10,11

Определим последовательности {xn} и {yn} при помощи условий:

xn = xn - 1 + 2yn - 1sin2$\displaystyle \alpha$,    yn = yn - 1 + 2xn - 1cos2$\displaystyle \alpha$;    x0 = 0, y0 = cos$\displaystyle \alpha$.

Найдите выражение для xn и yn через n и $ \alpha$.

Прислать комментарий     Решение

Задача 65210

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Двоичная система счисления ]
[ Производящие функции ]
Сложность: 4+
Классы: 10,11

День в Анчурии может быть либо ясным, когда весь день солнце, либо дождливым, когда весь день льет дождь. И если сегодня день не такой, как вчера, то анчурийцы говорят, что сегодня погода изменилась. Однажды анчурийские ученые установили, что 1 января день всегда ясный, а каждый следующий день в январе будет ясным, только если ровно год назад в этот день погода изменилась. В 2015 году январь в Анчурии был весьма разнообразным: то солнце, то дожди. В каком году погода в январе впервые будет меняться ровно так же, как в январе 2015 года?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .