|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В ряд лежат $100N$ бутербродов, каждый с колбасой и сыром. Дядя Федор и кот Матроскин играют в игру. Дядя Федор за одно действие съедает один бутерброд с одного из краев. Кот Матроскин за одно действие может стянуть колбасу с одного бутерброда (а может ничего не делать). Дядя Федор каждый ход делает по $100$ действий подряд, а кот Матроскин делает только $1$ действие; дядя Федор ходит первым, кот Матроскин вторым, далее ходы чередуются до тех пор, пока дядя Федор не доест все бутерброды. Дядя Федор выигрывает, если последний съеденный им бутерброд был с колбасой. Верно ли, что при каждом натуральном $N$ он сможет выиграть независимо от ходов кота Матроскина? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 630]
Чётными или нечётными будут сумма и произведение:
Можно ли доску размером 5×5 заполнить доминошками размером 1×2?
а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
Доказать, что любая ось симметрии 45-угольника проходит через его вершину.
Чётно или нечётно число 1 + 2 + 3 + ... + 1990?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 630] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|