ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В ряд лежат $100N$ бутербродов, каждый с колбасой и сыром. Дядя Федор и кот Матроскин играют в игру. Дядя Федор за одно действие съедает один бутерброд с одного из краев. Кот Матроскин за одно действие может стянуть колбасу с одного бутерброда (а может ничего не делать). Дядя Федор каждый ход делает по $100$ действий подряд, а кот Матроскин делает только $1$ действие; дядя Федор ходит первым, кот Матроскин вторым, далее ходы чередуются до тех пор, пока дядя Федор не доест все бутерброды. Дядя Федор выигрывает, если последний съеденный им бутерброд был с колбасой. Верно ли, что при каждом натуральном $N$ он сможет выиграть независимо от ходов кота Матроскина?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 630]      



Задача 89919

Тема:   [ Четность и нечетность ]
Сложность: 2-
Классы: 5,6,7

Чётными или нечётными будут сумма и произведение:
  а) двух чётных чисел?
  б) двух нечётных чисел?
  в) чётного и нечётного чисел?

Прислать комментарий     Решение

Задача 30289

Темы:   [ Четность и нечетность ]
[ Замощения костями домино и плитками ]
Сложность: 2
Классы: 5,6,7

Можно ли доску размером 5×5 заполнить доминошками размером 1×2?

Прислать комментарий     Решение

Задача 30290

Темы:   [ Четность и нечетность ]
[ Многоугольники ]
Сложность: 2
Классы: 5,6,7

а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
б) Что можно сказать в случае десятиугольника?

Прислать комментарий     Решение

Задача 30934

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Доказать, что любая ось симметрии 45-угольника проходит через его вершину.

Прислать комментарий     Решение

Задача 30937

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Чётно или нечётно число  1 + 2 + 3 + ... + 1990?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 630]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .