ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 61133

Темы:   [ Геометрия комплексной плоскости ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 9,10,11

Пусть z1, z2, ..., zn – вершины выпуклого многоугольника. Найдите геометрическое место точек  z = λ1z1 + λ2z2 + ... + λnzn,  где λ1, λ2, ..., λn – такие действительные положительные числа, что  λ1 + λ2 + ... + λn = 1.

Прислать комментарий     Решение

Задача 61180

Темы:   [ Геометрия комплексной плоскости ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 10,11

Докажите, что условием того, что четыре точки z0, z1, z2, z3 лежат на одной окружности (или прямой) является вещественность числа  

Прислать комментарий     Решение

Задача 61184

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 10,11

Докажите, что уравнение окружности (или прямой) на комплексной плоскости всегда может быть записано в виде  Azz + Bz – B z + C = 0,  где A и C – чисто мнимые числа.

Прислать комментарий     Решение

Задача 109162

Темы:   [ Геометрия комплексной плоскости ]
[ Окружность, вписанная в угол ]
Сложность: 3+
Классы: 10,11

Среди комплексных чисел p , удовлетворяющих условию  |p – 25i| ≤ 15,  найти число с наименьшим аргументом.

Прислать комментарий     Решение

Задача 61190

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 4-
Классы: 10,11

Докажите, что cтепень точки w относительно окружности  Azz + Bz – B z + C = 0  равна  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .