ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В строку выписаны 39 чисел, не равных нулю. Сумма каждых двух соседних чисел положительна, а сумма всех чисел отрицательна.
Каков знак произведения всех чисел?

Вниз   Решение


На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?

ВверхВниз   Решение


Докажите, что квадрат со стороной n не может накрыть более (n + 1)2 точек целочисленной решётки.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 18]      



Задача 76228

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ Десятичная запись числа ]
Сложность: 2

(Сообщил Ю. В.Матиясевич) Дана функция f : {1...N}$ \to${1...N} Найти период последовательности 1, f(1), f(f(1), ... Количество действий должно быть пропорционально суммарной длине предпериода и периода (эта сумма может быть существенно меньше N)
Прислать комментарий     Решение


Задача 76227

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ Десятичная запись числа ]
Сложность: 2+

Дано натуральное число n > 1. Определить длину периода десятичной записи дроби 1/n.
Прислать комментарий     Решение


Задача 76215

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 3+

Дополнить алгоритм предыдущей задачи поиском x и y, для которых ax + by = НОД(a,b).
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .