|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Требуется подсчитать количество последовательностей длины N, состоящих из 0 и 1, в которых никакие две единицы не стоят рядом. Входные данные Во входном файле записано целое число N (1 ≤ N ≤ 100). Выходные данные В выходной файл вывести количество искомых последовательностей. Пример входного файла 5 Пример выходного файла 13 Внутри окружности расположен прямоугольник $ABCD$. Лучи $BA$ и $DA$ пересекают окружность в точках $A_1$ и $A_2$. Точка $A_0$ – середина хорды $A_1A_2$. Аналогично определяются точки $B_0$, $C_0$, $D_0$. Докажите, что отрезки $A_0C_0$ и $B_0D_0$ равны. На плоскости даны точки $A$, $B$, $C$ и $D$ общего положения и проходящая через $B$ и $C$ окружность $\omega$. Точка $P$ движется по $\omega$. Обозначим через $Q$ точку пересечения описанных окружностей треугольников $ABP$ и $PCD$, отличную от $P$. Найдите геометрическое место точек $Q$. |
Страница: << 1 2 3 4 5 [Всего задач: 25]
[
Найти решение уравнения
В равнобедренном треугольнике ABC точки M и N находятся на
боковых сторонах AB и BC соответственно.
для некоторых a , b , c , x , y , z , то x=y=z или a=b=c .
Страница: << 1 2 3 4 5 [Всего задач: 25] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|