|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На доске написаны три функции: f1(x) = x + 1/x, f2(x) = x², f3(x) = (x – 1)². Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x. В один из дней года оказалось, что каждый житель города сделал не более одного звонка по телефону. Докажите, что население города можно разбить не более чем на три группы так, чтобы жители, входящие в одну группу, не разговаривали в этот день между собой по телефону. Двое играют в следующую игру. Есть кучка камней. Первый каждым своим ходом берет 1 или 10 камней. Второй каждым своим ходом берёт m или n камней. Ходят по очереди, начинает первый. Тот, кто не может сделать ход, проигрывает. Известно, что при любом начальном количестве камней первый всегда может играть так, чтобы выиграть (при любой игре второго). Какими могут быть m и n? Окружность S касается окружностей S1 и S2 в точках A1 и A2. Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально. В поселке 20 жительниц. 1 марта одна из них узнала интересную новость и сообщила её всем своим подругам. 2 марта те сообщили новость всем своим подругам, и так далее. Может ли так случиться, что: |
Страница: 1 2 3 4 5 6 >> [Всего задач: 28]
Длина пути В неориентированном графе требуется найти длину минимального пути между двумя вершинами. Гарантируется, что путь существует. Входные данные Во входном файле записано сначала число N - количество вершин в графе (1<=N<=100). Затем записана матрица смежности (0 обозначает отсутствие ребра, 1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной. Выходные данные В выходной файл выведите одно число - длину пути (количество ребер, которые нужно пройти). Пример входного файла 5 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 3 5 Пример выходного файла 3
Длина пути - 2 (Такая же задача, как длина пути, но путь может не существовать). В неориентированном графе требуется найти длину минимального пути между двумя вершинами. Входные данные Во входном файле записано сначала число N - количество вершин в графе (1<=N<=100). Затем записана матрица смежности (0 обозначает отсутствие ребра, 1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной. Выходные данные В выходной файл выведите одно число - длину пути (количество ребер, которые нужно пройти). Если пути не существует, выведите одно число -1. Пример входного файла 5 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 4 5 Пример выходного файла -1
Путь В неориентированном графе требуется найти минимальный путь между двумя вершинами. Входные данные Во входном файле записано сначала число N - количество вершин в графе (1<=N<=100). Затем записана матрица смежности (0 обозначает отсутствие ребра, 1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной. Выходные данные В выходной файл выведите сначала L - длину пути (количество ребер, которые нужно пройти). А затем выведите L+1 число - вершины в порядке следования вдоль этого пути. Если пути не существует, выведите одно число -1. Пример входного файла 5 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 3 5 Пример выходного файла 3 3 2 1 5
Числа в вершинах В неориентированном графе без кратных ребер и петель расставить в вершинах числа так, чтобы если вершины соединены ребром, то числа имели общий делитель, а если нет - то нет. Входные данные. В файле INPUT.TXT записано число N (0<N<7) - количество вершин в графе. Затем записана матрица смежности. Выходные данные. В файл OUTPUT.TXT вывести N натуральных чисел из диапазона Longint, которые вы предлагаете приписать вершинам. Пример файла INPUT.TXT 3 0 1 1 1 0 0 1 0 0 Пример файла OUTPUT.TXT 6 2 3
"Компоненты связности" В неориентированном графе посчитать количество компонент связности. В графе могут быть петли и кратные ребра. Входные данные. Во входном файле INPUT.TXT записаны сначала два числа N и M, задающие соответственно количество вершин и количество ребер (1<=N<=100, 0<=M<=10000), а затем перечисляются ребра. Каждое ребро задается номерами вершин, которые оно соединяет. Выходные данные. В выходной файл OUTPUT.TXT выведите одно число - количество компонент связности. Пример входного файла 3 4 1 1 1 2 1 3 2 3 Пример выходного файла 1 Пример входного файла 5 3 1 1 1 2 2 1 Пример выходного файла 4 Пример входного файла 5 0 Пример выходного файла 5
Страница: 1 2 3 4 5 6 >> [Всего задач: 28] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|