|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Дедка, Бабка, Внучка, Жучка и Кошка вместе с Мышкой могут вытащить Репку, а без Мышки — не могут. Сколько надо позвать Мышек, чтобы они смогли сами вытащить Репку? а) Диагонали выпуклого четырехугольника ABCD пересекаются в точке P. Известны площади треугольников ABP, BCP, CDP. Найдите площадь треугольника ADP. б) Выпуклый четырехугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами. Докажите, что произведение этих чисел представляет собой точный квадрат. Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что из этих девяти точек можно выбрать 5 точек, расположенных в вершинах выпуклого пятиугольника. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 88]
На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.
На полке в произвольном порядке стоят десять томов энциклопедии, пронумерованных от 1 до 10. Разрешается менять местами любые два тома, между которыми стоит не меньше четырёх других томов. Всегда ли можно расставить все тома по возрастанию номеров?
У Пети есть 12 одинаковых разноцветных вагончиков (некоторые, возможно, одного цвета, но неизвестно, сколько вагончиков какого цвета). Петя считает, что различных 12-вагонных поездов он сможет составить больше, чем 11-вагонных. Не ошибается ли Петя? (Поезда считаются одинаковыми, если в них на одних и тех же местах находятся вагончики одного и того же цвета.)
По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально?
Испанский король решил перевесить по-своему портреты своих предшественников в круглой башне замка. Однако он хочет, чтобы за один раз меняли местами только два портрета, висящие рядом, причём это не должны быть портреты двух королей, один из которых царствовал сразу после другого. Кроме того, ему важно лишь взаимное расположение портретов, и два расположения, отличающиеся поворотом круга, он считает одинаковыми. Доказать, что как бы сначала ни висели портреты, король может по этим правилам добиться любого нового их расположения.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 88] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|