ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У Васи есть камень (однородный, без внутренних полостей), имеющий форму выпуклого многогранника, у которого есть только треугольные и шестиугольные грани. Вася утверждает, что он разбил этот камень на две части так, что можно сложить из них куб (без внутренних полостей). Могут ли слова Васи быть правдой?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 65]      



Задача 111241

Тема:   [ Задачи с ограничениями ]
Сложность: 3
Классы: 6,7,8

Новогодняя гирлянда, висящая вдоль школьного коридора, состоит из красных и синих лампочек. Рядом с каждой красной лампочкой обязательно есть синяя. Какое наибольшее количество красных лампочек может быть в этой гирлянде, если всего лампочек 50?

Прислать комментарий     Решение

Задача 65126

Темы:   [ Задачи с ограничениями ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 10,11

На новогодний вечер пришли несколько супружеских пар, у каждой из которых было от 1 до 10 детей. Дед Мороз выбирал одного ребёнка, одну маму и одного папу из трёх разных семей и катал их в санях. Оказалось, что у него было ровно 3630 способов выбрать нужную тройку людей. Сколько всего могло быть детей на этом вечере?

Прислать комментарий     Решение

Задача 79614

Темы:   [ Задачи с ограничениями ]
[ Числовые таблицы и их свойства ]
[ Обход графов ]
Сложность: 3+
Классы: 9

В квадратной таблице из 9×9 клеток отмечены 9 клеток, лежащие на пересечении второй, пятой и восьмой строк со вторым, пятым и восьмым столбцами. Сколькими путями можно из левой нижней клетки попасть в правую верхнюю, двигаясь только по неотмеченным клеткам вверх или вправо?

Прислать комментарий     Решение

Задача 116971

Тема:   [ Задачи с ограничениями ]
Сложность: 3+
Классы: 5,6,7

Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова ИНТЕГРИРОВАНИЕ, а Маша сделала то же самое со словом СУПЕРКОМПЬЮТЕР. У кого получилось больше слов?

Прислать комментарий     Решение

Задача 110208

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Шахматные доски и шахматные фигуры ]
[ Раскраски ]
Сложность: 4-
Классы: 8,9,10

Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.)  Докажите, что количество хороших раскрасок не меньше чем 68.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .