|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружность пересекает стороны BC, CA, AB треугольника ABC в точках A1 и A2, B1 и B2, C1 и C2 соответственно. Докажите, что если перпендикуляры к сторонам треугольника, проведенные через точки A1, B1 и C1, пересекаются в одной точке, то и перпендикуляры к сторонам, проведенные через A2, B2 и C2, тоже пересекаются в одной точке. Окружности S1 и S2 радиуса 1 касаются в точке A; центр O окружности S радиуса 2 принадлежит S1. Окружность S1 касается S в точке B. Докажите, что прямая AB проходит через точку пересечения окружностей S2 и S. Постройте треугольник ABC, если дана прямая l, на которой лежит сторона AB, и точки A1, B1 — основания высот, опущенных на стороны BC и AC. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 65]
Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево (например, таких как 54345, 17071)?
Сколько существует шестизначных чисел, у которых по три чётных и нечётных цифры?
Сколькими способами можно выложить в ряд пять красных, пять синих и пять зелёных шаров так, чтобы никакие два синих шара не лежали рядом?
Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?
Имеется m белых и n чёрных шаров, причём m > n. Сколькими способами можно все шары разложить в ряд так, чтобы никакие два чёрных шара не лежали рядом?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 65] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|