ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Длины сторон треугольника ABC не превышают 1.
Докажите, что  p(1 – 2Rr) ≥ 1,  где p – полупериметр, R и r – радиусы описанной и вписанной окружностей треугольника ABC.

Вниз   Решение


Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:   (1 + x/y)(1 + y/z)(1 + z/x) ≥ 8.

ВверхВниз   Решение


В углах шахматной доски 3 на 3 стоят кони: в верхних углах — белые, в нижних — чёрные. Доказать, что для того, чтобы им поменяться местами, потребуется не менее 16 ходов. (Кони не обязательно ходят сначала белый, потом чёрный. Ходом считается ход одного коня.)

ВверхВниз   Решение


Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр?

ВверхВниз   Решение


На столе лежат в ряд пять монет: средняя – орлом вверх, а остальные – решкой вверх. За одну операцию разрешается одновременно перевернуть ровно три монеты, лежащие рядом. Можно ли, выполнив такую операцию несколько раз, добиться того, чтобы все пять монет лежали орлом вверх?

ВверхВниз   Решение


Ввести натуральные числа m и n и напечатать период десятичной дроби m / n. Например, для дроби 1 / 7 периодом будет (142857), а если дробь конечная, то ее период состоит из одной цифры 0.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 98755

 [Бит - реверс]
Тема:   [ Двоичная система счисления ]
Сложность: 2

Целое положительное число m записывается в двоичной системе счисления и разряды (в этой записи) переставляются в обратном порядке. Получившееся число принимается за значение функции B (m). Напечатать значения для m = 512, 513, 514, ... , 1023. Вот, для ясности, начало этой распечатки: 1, 513, 257, ...

Прислать комментарий     Решение

Задача 98778

 [Совершенные числа]
Тема:   [ Простые числа. Разложение на простые множители ]
Сложность: 2

Натуральное число называется совершенным, если оно равно сумме все своих собственных делителей, включая 1. Напечатать все совершенные числа, меньшие, чем заданное число М.

Прислать комментарий     Решение

Задача 98779

 [Период дроби]
Тема:   [ Дроби ]
Сложность: 2

Ввести натуральные числа m и n и напечатать период десятичной дроби m / n. Например, для дроби 1 / 7 периодом будет (142857), а если дробь конечная, то ее период состоит из одной цифры 0.

Прислать комментарий     Решение

Задача 98795

 [Системы счисления]
Тема:   [ Системы счисления ]
Сложность: 2+

В массиве М [1:9] записаны разряды (цифры) некоторого натурального числа в I-ричной системе счисления (М [1]-разряд единиц и т.д.). Отпечатать разряды этого числа в J-ричной системе счисления, начиная с разряда единиц Числа I, J не превосходят 10.

Прислать комментарий     Решение

Задача 67172

Темы:   [ Десятичная запись числа ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .