|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что площадь S треугольника равна abc/4R. Радиус сферы, касающейся всех рёбер правильного тетраэдра, равен 1. Найдите ребро тетраэдра. Попробуйте составить квадрат из набора палочек: 6 шт. по 1 см, 3 шт. по 2 см, 6 шт. по 3 см и 5 шт. по 4 см. Ломать палочки и накладывать одну на другую нельзя. Из произвольной внутренней точки O выпуклого n-угольника опущены перпендикуляры на стороны (или их продолжения). На каждом перпендикуляре от точки O по направлению к стороне построен вектор, длина которого равна половине длины той стороны, на которую опущен перпендикуляр. Определить сумму построенных векторов. Расположите в порядке возрастания числа: 2222; 2222; 2222; 2222; 2222; 2222; 2222. Ответ обоснуйте. Вычислите функции gk,l(x) при 0 ≤ k + l ≤ 4 и покажите, что все они являются многочленами. Какое из двух чисел больше: а) б) Можно ли разбить все пространство на правильные тетраэдры и октаэдры? |
Страница: 1 2 >> [Всего задач: 8]
В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник?
Среди вершин двух неравных икосаэдров можно выбрать шесть, являющихся вершинами правильного октаэдра.
Можно ли вписать октаэдр в додекаэдр так, чтобы каждая вершина октаэдра была вершиной додекаэдра?
Можно ли разбить все пространство на правильные тетраэдры и октаэдры?
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|