ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Кусок сыра имеет форму куба. В нем имеется несколько одинаковых непересекающихся сферических дыр. Докажите, что можно разрезать сыр на выпуклые многогранники так, чтобы внутри каждого из них находилась ровно одна дыра.

Вниз   Решение


На плоскости отмечены три точки, служащие изображениями (параллельными проекциями) трёх последовательных вершин правильного шестиугольника. Постройте изображения остальных вершин шестиугольника.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 47]      



Задача 87614

Темы:   [ Построения на проекционном чертеже ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

На плоскости отмечены три точки, служащие изображениями (параллельными проекциями) трёх последовательных вершин правильного шестиугольника. Постройте изображения остальных вершин шестиугольника.
Прислать комментарий     Решение


Задача 109093

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 8,9

Точки A и B лежат в плоскости α , M – такая точка в пространстве, для которой AM = 2 , BM = 5 и ортогональная проекция на плоскость α отрезка BM в три раза больше ортогональной проекции на эту плоскость отрезка AM . Найдите расстояние от точки M до плоскости α .
Прислать комментарий     Решение


Задача 109098

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Известно, что некоторая точка M равноудалена от двух пересекающихся прямых m и n . Докажите, что ортогональная проекция точки M на плоскость прямых m и n лежит на биссектрисе одного из углов, образованных прямыми m и n .
Прислать комментарий     Решение


Задача 109099

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 10,11

Точка M равноудалена от трёх прямых AB , BC и AC . Докажите, что ортогональная проекция точки M на плоскость ABC является центром вписанной окружности либо одной из вневписанных окружностей треугольника ABC .
Прислать комментарий     Решение


Задача 109101

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Прямая l проходит через точку, лежащую на окружности с центром O и радиусом r . Известно, что ортогональной проекцией прямой l на плоскость окружности является прямая, касающаяся этой окружности. Найдите расстояние от точки O до прямой l .
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .