|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что суммы квадратов расстояний от произвольной точки пространства до противоположных вершин прямоугольника равны между собой. Найдите расстояние от точки M0(x0;y0;z0) до плоскости Ax+By+Cz+D=0 . Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка? Можно ли из последовательности 1, 1/2, 1/3, ... выбрать (сохраняя порядок) сто чисел, из которых каждое, начиная с третьего, равно разности двух предыдущих? На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках? Докажите, что если a + b + c + d > 0, a > c, b > d, то |a + b| > |c + d|. |
Страница: 1 2 3 4 >> [Всего задач: 18]
|x + 2000| < |x - 2001|.
Докажите, что если a + b + c + d > 0, a > c, b > d, то |a + b| > |c + d|.
На улице n домов. Каждый день почтальон идёт на почту, берёт там письма для жителей одного дома и разносит их. Затем он возвращается на почту, берёт письма для жителей другого дома и снова их разносит. И так он обходит все дома. В каком месте нужно построить почту, чтобы почтальону пришлось проходить наименьшее расстояние? Улицу можно считать отрезком прямой.
При каком наименьшем $k$ среди любых трёх ненулевых действительных чисел можно выбрать такие два числа $a$ и $b$, что |$a - b$| ≤ $k$ или |1/a – 1/b| ≤ $k$?
Страница: 1 2 3 4 >> [Всего задач: 18] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|