ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Рассматриваются такие наборы действительных чисел  {x1, x2, x3, ..., x20},  заключённых между 0 и 1, что  x1x2x3...x20 = (1 – x1)(1 – x2)(1 – x3)...(1 – x20).  Найдите среди этих наборов такой, для которого значение x1x2x3...x20 максимально.

Вниз   Решение


Прямая, пересекающая основание равнобедренного треугольника и проходящая через вершину, разбивает этот треугольник на два треугольника.
Докажите, что радиусы окружностей, описанных около этих треугольников, равны.

ВверхВниз   Решение


Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.
Чему равна сторона квадрата, если площадь прямоугольника 54 м²?

ВверхВниз   Решение


В параллелепипеде ABCDA1B1C1D1 проведён отрезок, соединяющий вершину A с серединой ребра CC1 . В каком отношении этот отрезок делится плоскостью BDA1 ?

ВверхВниз   Решение


Докажите равенство:

tg 20o . tg 40o . tg 80o = $\displaystyle \sqrt{3}$.


ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD отмечены середины противоположных сторон BC и AD– точки M и N. Диагональ AC проходит через середину отрезка MN. Найдите площадь АВСD, если площадь треугольника АВС равна S.

ВверхВниз   Решение


Расстояние между центрами непересекающихся окружностей равно a . Докажите, что точки пересечения общих внешних касательных с общими внутренними касательными лежат на одной окружности и найдите её радиус.

ВверхВниз   Решение


Вычислите следующие произведения:
а) sin 20osin 40osin 60osin 80o;
б) cos 20ocos 40ocos 60ocos 80o.

ВверхВниз   Решение


Высоты треугольника ABC, проведённые из вершин B и C пересекаются в точке M. Известно, что  BM = CM.
Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Существует ли на координатной плоскости прямая, относительно которой симметричен график функции y = 2x?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 79539

Темы:   [ Показательные функции и логарифмы (прочее) ]
[ Бесконечные пределы и пределы на бесконечности ]
Сложность: 3+
Классы: 9,10,11

Существует ли на координатной плоскости прямая, относительно которой симметричен график функции y = 2x?
Прислать комментарий     Решение


Задача 79356

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Наименьший или наибольший угол ]
[ Бесконечные пределы и пределы на бесконечности ]
Сложность: 4
Классы: 10,11

На плоскости расположено несколько прямых и точек. Доказать, что на плоскости найдётся точка A, не совпадающая ни с одной из данных точек, расстояние от которой до любой из данных точек больше расстояния от неё до любой из данных прямых.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .