ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Чикин В.

С помощью циркуля и линейки постройте выпуклый четырёхугольник по серединам его трёх равных сторон.

Вниз   Решение


Площадь трапеции равна 1. Какую наименьшую величину может иметь наибольшая диагональ этой трапеции?

ВверхВниз   Решение


Улитка должна проползти вдоль линий клетчатой бумаги путь длины 2n, начав и кончив свой путь в данном узле.
Доказать, что число различных её маршрутов равно  

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 101]      



Задача 58316

Темы:   [ Классическая комбинаторика (прочее) ]
[ Комбинаторная геометрия (прочее) ]
[ Сочетания и размещения ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 8,9

На плоскости дано  n > 4  точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее    различных выпуклых четырёхугольников с вершинами в этих точках.

Прислать комментарий     Решение

Задача 58317

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правильные многоугольники ]
Сложность: 4
Классы: 8,9

Докажите, что число неравных треугольников с вершинами в вершинах правильного n-угольника равно ближайшему к  n²/12  целому числу.

Прислать комментарий     Решение

Задача 76447

Темы:   [ Классическая комбинаторика (прочее) ]
[ Разные задачи на разрезания ]
[ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 10,11

На сколько частей могут разделить пространство n плоскостей?
(Каждые три плоскости пересекаются в одной точке, никакие четыре плоскости не имеют общей точки.)

Прислать комментарий     Решение

Задача 78237

Темы:   [ Классическая комбинаторика (прочее) ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 10,11

Улитка должна проползти вдоль линий клетчатой бумаги путь длины 2n, начав и кончив свой путь в данном узле.
Доказать, что число различных её маршрутов равно  

Прислать комментарий     Решение

Задача 78599

Темы:   [ Классическая комбинаторика (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4
Классы: 9,10,11

На клетчатой доске 11×11 отмечено 22 клетки так, что на каждой вертикали и на каждой горизонтали отмечено ровно две клетки. Два расположения отмеченных клеток эквивалентны, если, меняя любое число раз вертикали между собой и горизонтали между собой, мы из одного расположения можем получить другое. Сколько существует неэквивалентных расположений отмеченных клеток?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .