ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что из пяти векторов всегда можно выбрать два так, чтобы длина их суммы не превосходила длины суммы оставшихся трех векторов.

Вниз   Решение


Через данную вершину A выпуклого четырёхугольника ABCD провести прямую, делящую его площадь пополам.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 57239

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9

Постройте квадрат, три вершины которого лежат на трёх данных параллельных прямых.
Прислать комментарий     Решение


Задача 57240

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9

Постройте ромб, две стороны которого лежат на двух данных параллельных прямых, а две другие проходят через две данные точки.
Прислать комментарий     Решение


Задача 57241

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9

Постройте четырехугольник ABCD по четырем сторонам и углу между AB и CD.
Прислать комментарий     Решение


Задача 78211

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 9,10

Через данную вершину A выпуклого четырёхугольника ABCD провести прямую, делящую его площадь пополам.
Прислать комментарий     Решение


Задача 54534

Темы:   [ Четырехугольники (построения) ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите через данную точку прямую, пересекающую две стороны данного треугольника так, чтобы точки пересечения и концы третьей стороны находились на одной окружности.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .